Asymmetric source acoustic LWD for the improved formation shear velocity estimation
نویسندگان
چکیده
Most acoustic logging while drilling (LWD) tools generate a single pure borehole mode (e.g., dipole or quadrupole) to estimate the formation shear velocity. We propose an approach where multipole modes are generated simultaneously and used to obtain a better shear estimation. This approach uses an asymmetric source with arrays of receivers distributed azimuthally around the tool to generate and identify signals from different modes. We investigate such an approach using both synthetic and laboratory data. The laboratory data are collected from a scale-model LWD tool with one active source transducer mounted on the side of the tool. Four sets of receiver arrays, each separated by 90 degrees azimuthally, are used to isolate monopole, dipole and quadrupole modes by coherently adding and subtracting received arrivals. A method is then apply to perform dispersion analysis on these arrivals. With least square fitting, formation shear velocities are estimated from both dipole and quadrupole modes’ arrivals. We find that, by averaging the estimates obtained independently from dipole and quadrupole modes, we can reduce the uncertainty and improve the confidence of the estimation for the formation shear velocity.
منابع مشابه
A Study of Seismoelectric Signals in Measurement While Drilling By Xin Zhan
An LWD acoustic wave can move the excess charge in the electric double layer along the borehole wall to generate a streaming electric field. This thesis is an experimental and theoretical investigation of the electric field induced by the multipole LWD acoustic wave. The main goal of this thesis is to understand the mechanism in the seismoelectric conversion under the LWD geometry and prove the...
متن کاملEffects of tool eccentricity on wave dispersion properties in borehole acoustic logging while drilling
In this paper, a finite element approach is applied to study the dispersion properties of non-leaky acoustic waves inside boreholes with off-centered LWD (logging while drilling) tools. Both soft and hard formation cases are studied with focus on phase velocity dispersions of Stoneley, dipole and quadrupole modes. When an LWD tool is off-centered, the dispersion curve of the Stoneley mode shift...
متن کاملEstimation of Formation Parameters Using Full Waveform Acoustic
A combination of borehole Stoneley waves from full waveform acoustic logs and direct shear wave logs was used to estimate formation permeability and shear wave velocity. Data sets used here were collected by ARea's array full waveform acoustic logging tool and shear wave logging tool. The Pand S-wave velocities of the formation are determined by threshold detection with cross-correlation correc...
متن کاملDetermination of Shear Wave Velocities in "slow" Formations
Direct determination of formation shear wave travel time is impossible in "slow" formations where the shear wave velocity is lower than the borehole fluid (mud) velocity. However, the Stoneley waves in these formations are very sensitive to changes in formation shear wave properties and can be used to indirectly determine the formation shear velocity, In addition, the P wave packet is highly de...
متن کاملAn Experimental Study Of Seismoelectric Signals In Logging While Drilling
Acoustic logging while drilling (LWD) may be complicated because of contamination by waves propagating along the drill collar (the tool waves). In this paper we propose a new method for separating tool waves from the true formation acoustic arrivals in borehole acoustic LWD. The method utilizes the seismoelectric signal induced by the acoustic wave at the fluid-formation boundary. The basis for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009